VERSALOK® Standard units have a unique ability to provide a wide range of retaining wall curves and corners. Inside (concave), outside (convex) and serpentine curves are constructed with the same basic VERSA-LOK units by simply changing the alignment of units in the wall.

The same Standard unit is used to build inside 90° corners. And, by sawing or splitting the solid unit, you can build structurally stable interlocked corners ranging from 25° (outside) to 140° (inside). This flexibility and adaptability is unmatched by any other modular retaining wall system.

CURVES

Concave, convex and serpentine VERSA-LOK walls are made simply by fanning or bringing the tails of the units together. The trapezoidal shape of Standard units allows for construction of various radii while maintaining structural stability and tight vertical joints at the face of the wall. If a wall contains both curves and corners, start at the corners and work into the curves. Complete the entire first (base) course before proceeding to the second.

The radius of a curve will change as wall height increases, due to the 3/4-inch setback in each course. This changing radius will shift how units line up with the units below. The unique VERSA-LOK hole-to-slot pinning system easily accommodates this variation in curves. VERSA-LOK units do not need to overlap exactly halfway over units below (half-bond). However, units should overlap the units below by at least four inches. Because bond can vary in VERSA-LOK walls, vertical joints at the face can, and always should be, tight fitting (no gapping).
CONVEX (OUTSIDE) CURVES

For convex curves, decrease space between backs of units, always keeping front joints tightly aligned. The minimum outside radius is 8’ 0” without cutting any of the units (Figure 1). However, establishing a minimum radius for the top course of a few inches greater (8’ 2” to 8’ 4”) is recommended to allow for creep, or in the event additional courses are added in the future. Because the units set back 3/4” per course, the radius of the curves becomes tighter as the wall increases in height; therefore, you need to “backward plan” the radius of the base course. The example below shows how to calculate the base course radius when the radius for the top course is known.

EXAMPLE

This example would be used only if you were building a four-foot-high convex curved wall and your desired radius at the face of the top course was 8’ 2”. The base course radius in this example would be 8’ 7-1/4”.

4-ft. wall = 8 courses (7 setbacks)
1 setback = 3/4”; 7 setbacks = 5-1/4”
Desired radius of finished wall: 8’ 2”
8’ 2” + 5-1/4” = 8’ 7-1/4”. This is your starting (base course) outside radius.

<table>
<thead>
<tr>
<th>OUTSIDE CURVE TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall height (in feet)</td>
</tr>
<tr>
<td>4 ft.</td>
</tr>
<tr>
<td>3.5 ft.</td>
</tr>
<tr>
<td>3 ft.</td>
</tr>
<tr>
<td>2.5 ft.</td>
</tr>
<tr>
<td>2 ft.</td>
</tr>
<tr>
<td>1.5 ft.</td>
</tr>
<tr>
<td>1 ft.</td>
</tr>
<tr>
<td>.5 ft.</td>
</tr>
</tbody>
</table>

Careful base course planning for convex curves is important when building tight curves.
CONCAVE (INSIDE) CURVES
Concave curves are constructed by merely fanning (opening up) the spacing between the backs of adjacent units. The minimum recommended radius, as measured to the face of the wall, for an inside curve is 6' 0" at the bottom of a wall (Figure 2). Tighter curves can be built and pinned, but the appearance of the wall becomes ragged; structurally there is no problem.

FIGURE 2 Serpentine Wall Detail

HOW TO LAY OUT A CURVE
1. Stake the center of the curve.
2. Swing layout line from center, marking the radius for bottom (base) course. See curve table.
3. Excavate and prepare base for the wall.
4. Place first unit on the radius desired.
5. Place adjacent units, check radius as you proceed.

CONVEX CURVE REINFORCEMENT
When placing geogrid behind convex curves, see Figure 3 for general reinforcement placement guidelines. For specific instructions, refer to geosynthetic manufacturer’s guidelines.

FIGURE 3 Convex Curve

CONCAVE CURVE REINFORCEMENT
When placing geogrid behind inside curves, simply diverge reinforcement from the face as shown in Figure 4. Place additional reinforcement on the course of units directly above the specified elevation (see dotted lines) so that it completely covers the gap. Keep successive layers of reinforcement from touching. Cover all gaps with reinforcement before backfilling.

FIGURE 4 Concave Curve

Build inside and outside curves with just one Standard VERSA-LOK unit—no specialty units needed.
CORNERS

The solid, VERSA-LOK® Standard unit provides simplicity and flexibility for the construction of structurally stable corners. Not only does the VERSA-LOK system allow for easy construction of 90° inside and outside corners, but also for custom built corners at various angles.

When building walls with corners, always start at the corners and work out from there. Do not adjust length or gap at the corner. Instead, make adjustments away from the corner. Install partial units in the middle of the wall where they are less visible. Create these partial units by saw-cutting whole units into pieces at least four inches wide.

OUTSIDE 90° CORNERS

Start outside 90° corners by splitting a Standard unit in half and alternating half units at the corners as shown in Figure 5. Do not miter corners. Turn half units upside down at corners to conceal splitting groove. Adhere these half units to the wall using VERSA-LOK® Concrete Adhesive, as they will not pin. This corner detail creates about a four-inch overlap of the units below. As each additional course is setback 3/4-inch, this overlap will vary. The unique VERSA-LOK hole-to-slot pinning system allows vertical joints to wander. Units do NOT need to overlap exactly halfway over units below (half-bond). However, units should overlap units below by at least four inches.

INSIDE 90° CORNERS

Half units are not required to start an inside corner; merely alternate the placement of a full-size VERSA-LOK unit past the inside corner (approximately 12” on the base course) as shown in Figure 6.

FIGURE 5 Outside 90° Corner

FIGURE 6 Inside 90° Corner
REINFORCEMENT PLACEMENT FOR CORNERS

For 90° outside corners, alternate the principle reinforcement direction whenever sections overlap (Figure 7). For 90° inside corners, extend geogrid past corners (Figure 8). Check your geosynthetic manufacturers’ guidelines.

FIGURE 7 Outside Corner

Place 3" of soil fill between overlapping reinforcement for proper anchorage.

FIGURE 8 Inside Corner

Alternate the extension of reinforcement at subsequent reinforcement elevations.

At subsequent reinforcement elevation, extend reinforcement from opposite wall face.

*Extend reinforcement beyond wall face at a distance equal to 1/4 of the height of the wall (H).

Example: H = 12' wall, extension = H/4 = 3'

SPECIALTY CORNERS

A variety of custom inside and outside corners (other than 90°) can be made with VERSA-LOK® Standard units. Use the illustrations provided in Figures 9 through 13A as guidelines when designing and building specialty corners.

The sets of illustrations for each corner arrangement represent alternate courses. Split the units where textured faces are desired and visible; saw cut the units when straight edges are needed to fit tightly next to adjacent units.

Alternating outside corner units should always overlap; do not butt or miter corners. If corners are butted or mitered, walls could separate at the corner due to ground movement.

Saw cut partial units to create a smooth vertical joint for tight-fitting face joints.

A portable hydraulic splitter creates textured split faces.
ADDITIONAL CUSTOM CORNERS

FIGURE 10 Low Angle Outside Corner

FIGURE 11 Near Right Angle Outside Corner

FIGURE 12 Low Angle Inside Corner

FIGURE 13 Large Angle Inside Corner

FIGURE 9 Large Angle Outside Corner

Saw cut to remove excess material.

Split to produce desired texture.

Saw cut to remove excess material.

This optional large angle inside corner does not require the special saw cuts illustrated in Figure 13.

Place full and half standard units at the desired angle.